
Solutions for Week 10

Bruno Loureiro and Luca Saglietti

20.05.2021

1 Exercise 11.1

The random-subcube model is defined by its solution space S ⊂ {0, 1}N (not by a graphical model).
We define S as the union of b2(1−α)Nc random clusters (where bxc denotes the integer value of x). A
random cluster A being defined as:

A = {σ|σi ∈ πAi , ∀ i ∈ {1, . . . , N}} (1.1)

where πA is a random mapping:

πA : {1, . . . , N} → {{0}, {1}, {0, 1}}
i 7→ πAi (1.2)

such that for each variable i, πAi = {0} with probability p/2, {1} with probability p/2, and {0, 1} with
probability 1−p. A cluster is thus a random subcube of {0, 1}N . If πAi = {0} or {1}, variable i is said
“frozen” in A; otherwise it is said “free” in A. One given configuration σ might belong to zero, one
or several clusters. A “solution” belongs to at least one cluster.

We will analyze the properties of this model in the limit N → ∞, the two parameters α and p
being fixed and independent of N . The internal entropy s of a cluster A is defined as 1

N log2{|A|}, i.e.
the fraction of free variables in A. We also define complexity Σ(s) as the (base 2) logarithm of the
number of clusters of internal entropy s per variable (i.e. divide by N).

Comments: Note that in a usual constraint satisfaction problem (e.g. graph colouring), we are
given the space in which the variables live (a.k.a. the configuration space: σ ∈ {1, · · · , q}N for graph
colouring, where q is the number of colours) and a set of constraints f(σ) that the variables need
to satisfy (e.g. two neighbouring variables cannot share the same colour). In the Statistical Physics
approach, we define a Gibbs-Boltzmann measure µβ(σ) over the space of configurations that enforce
the constraints (and sometimes we soften them, by introducing a ”temperature” parameter β > 0).
Sampling from µβ therefore is equivalent to sampling from the solution space S, which is the set of
all configurations satisfying the constraint.

In the Random Subcube Model (RSM), the configuration space is an N dimensional hypercube
σ ∈ {0, 1}N . However, instead of giving a set of constraints over the configurations, we define the
solution space by directly specifying the solution space S. This is defined as a union S =

⋃M
µ=1Aµ of

M = b2(1−α)Nc subcubes Aµ ⊂ {0, 1}N which are sampled identically and independently. Therefore,
the Gibbs-Boltzmann measure is simply the uniform distribution over S. More specifically, each
subcube Aµ composing the solution space is generated as follows:

1. Draw a vector πµ ∈ {0, 1, {0, 1}}N with components πi i.i.d. on:

πµi =


0 with probability p/2

1 with probability p/2

{0, 1} with probability 1− p
(1.3)
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2. Given πµ, the subcube Aµ ⊂ {0, 1}N is constructed by fixing σi = 0, 1 if πµi = 0, 1. These
variables are called ”frozen” since they are fixed by the random map. If πµi = {0, 1}, then σi
can be 0 or 1. These variables are called free, since they are free to take any value.

Note that a given configuration σ can belong to more than one subcube Aµ. If it belongs to at least
one, it is in the solution set S. In summary, the parameter α ∈ [0, 1) fixes the number of subcubes in
the model, and the parameter p determine the size of the subcubes.

(a) What is the analog of the satisfiability threshold αs in this model?

Solution: By definition, the satisfiability threshold is the value αs such that for α > αs there
are no solutions, i.e. no configuration satisfying all the constraints. In the RSM, a solution
is a configuration σ that belongs to at least one cluster A, and the size of each cluster is
|A| = 2# free variables ≥ 1. Therefore, the SCM has no solution if and only if there are no clusters,
i.e. α > 1 such that (1− α) < 0 and S = ∅. Hence, αs = 1.

(b) Compute the αd threshold below which most configurations belong to at least one cluster.

Solution: Let’s start by computing the probability that a configuration σ ∈ {0, 1}N belongs
to a random cluster A:

P(σ ∈ A)
(a)
=

N∏
i=1

P
(
σi ∈ πAi

) (b)
=

N∏
i=1

P
(
πAi ∈ {{σi}, {0, 1}}

)
=

N∏
i=1

(
1− p+

p

2

)
=
(

1− p

2

)N
where in (a) we used that each component of the configuration is distributed independently and
in (b) we used that the probability for σi to be the image of a random map πAi is equivalent to
the probability that the random map πAi takes value σi or {0, 1}. Therefore a given configuration
σ belongs on average to:

E|{A|σ ∈ A}| = (# of clusters with at least one σ)× (prob. σ belongs to A)

= 2(1−α)N
(

1− p

2

)N
= 2N(1−α+log2(1− p

2 )) = 2N(log2(2−p)−α) (1.4)

Therefore, as N →∞ we can identify two regimes: a) α > log2(2− p) the average above goes to
zero exponentially in N , meaning that a given configuration on average doesn’t belong to any
cluster; b) α < log2(2−p) then the average grows exponentially with N , meaning that on average
a given configuration belong to many clusters. In particular, this means that all configurations
belong at least to one cluster, and therefore with high probability all configurations are solutions.
Thus, the clustering threshold αd = log2(2− p), and for α < αd we have stot = 1

N log2(|S|) = 1.

(c) For α > αd write the expression for the complexity Σ(s) as a function of the parameters p and
α. Compute the total entropy defined as stot = maxs{Σ(s) + s|Σ(s) ≥ 0}. Observe that there
are two regimes in the interval α ∈ (αd, 1), discuss their properties and write the value of the
“condensation” threshold αc.

Solution: To compute Σ(s), we need to count the number of clusters with a given internal
entropy s. Let s(A) = 1

N log2(|A|) denote the internal entropy of cluster A, and recall that this
is the fraction of free variables in A. The probability that a cluster A has entropy s given by:

P(s(A) = s) = (# possible free variables)× (prob. frozen)# frozen × (prob. free)# free

=

(
N

Ns

)
p(1−s)N (1− p)Ns ≡ ρ(s) (1.5)
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We are now in a position to compute Σ(s). Let N (s) be the number of clusters with internal
entropy s, and recall that Σ(s) = 1

N log2N (s). Note that N (s) and Σ(s) are not deterministic
quantities: they are random variables. But if we are lucky, as N → ∞ we can show that even
though N (s) fluctuates, Σ(s) concentrates around its mean - just as we typically do for the
free entropy. Indeed, this is the case: it is not hard to see that N (s) is a binomial distribution
Binom

(
2(1−α)N , ρ(s)

)
, and therefore Σ(s) is simply the entropy of this binomial distribution:

Σ(s) =

{
1− α−H(s, 1− p) if H(s, 1− p) ≤ 1− α
−∞ otherwise

(1.6)

where H(x, y) is given by:

H(x, y) = x log2

(
x

y

)
− (1− x) log2

(
1− x
1− y

)
(1.7)

Now consider the regime α > αd. The total entropy can be computed using Laplace’s method:∑
A

2Ns(A) ≈ N
∫

ds 2N(Σ(s)+s)I (Σ(s) ≥ 0) � 2N(Σ(s?)+s?) (1.8)

where s? = argmins {Σ(s) + s|Σ(s) ≥ 0}. Note that even though this seems to over count the
solutions, since a configuration can belong to one or more clusters and this sum just add the
cluster sizes, in the regime α > αd we have shown that the fraction of solutions belonging to
more than one cluster is exponentially small. To solve the minimisation problem, search for zero
derivative points:

∂Σ

∂s
= −1 ⇔ s0 = 2

1− p
2− p, Σ(s0) =

p

2− p − α+ log2(2− p) (1.9)

We can distinguish two cases: a) when Σ(s0) ≥ 0, i.e. α < αc ≡ p
2−p + log2(2 − p), then

the minimiser is given by s? = s0; b) when Σ(s0) ≤ 0, i.e. α > αc, the correct minimiser is
s? = sM = maxs{s|Σ(s) ≥ 0}. Therefore:

stot =

{
1− α+ log2(1− p) for α ≤ αc
sM for α > αc

(1.10)

Summarising, we have four phases:

Liquid phase: α < αd, almost all configurations are solutions, and stot = 1.

Clustered phase: αd < α < αc, the solutions set S is partitioned into exponentially many
non-overlapping clusters. Most of solutions are in the eNΣ(s̃) with internal entropy s̃.

Condensed clustered phase: αc < α < αs, the solution set S is partitioned into exponen-
tially many non-overlapping clusters. However, most solutions are in clusters with entropy
sM , but their number is not exponentially large since Σ(sM ) = 0.

Unsatisfiable phase: α > αs, there are no clusters, and therefore no solutions.
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Figure 1: Complexity function Σ(s) under clustered phase (left, α = 0.8, p = 0.6) and condensed
clustered phase (right, α = 0.95, p = 0.6)
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Figure 2: Complexity as a function of α for p = 0.6.
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