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1 Exercise 12.1

The p-spin model is one of the cornerstone of spin glass theory. It is defined as follows: there are 2N

possible configurations for the N spins variables Si = ±1, and the Hamiltonian is given by all possible
p-body (or p-upplet) interactions:

H = −
∑

i1<i2<...<ip

Ji1,...,ipSi1 . . . Sip (1.1)

with

P (J) =

√
πp!

Np−1
e
−N

p−1

p!
J2

(1.2)

1. Computing the moment of the partition function using Gaussian integrals, show that

E[Zn] =
∑

{Sai },{Sbi },...,{Sni }

exp

 β2

4Np−1

∑
a,b

(∑
i

Sai S
b
i

)p (1.3)

Solution: The replica computation for the p-spin model is very similar to the one for the
the Curie-Weiss model we saw in lectures. Let’s recall the main steps. First, define the Gibbs-
Boltzmann measure over spin configurations S ∈ {−1, 1}N :

Pβ(S = s) =
1

Zβ(J)
e−βH(s) =

1

Zβ(J)
e
β

∑
i1<i2<...<ip

Ji1,...,ipsi1 ...sip
(1.4)

where the normalisation Zβ (a.k.a. the partition sum) is explicitly given by:

Zβ(J) =
∑

s∈{−1,1}N
e
β

∑
i1<i2<...<ip

Ji1,...,ipsi1 ...sip
(1.5)

The goal of the replica computation is to compute the averaged free energy density in the
thermodynamic limit N →∞:

fβ = − lim
N→∞

1

N
EJ logZβ(J). (1.6)

Note that we expect 1
N logZβ to concentrate on its average as N → ∞. However, taking the

average of a logarithm is hard. Therefore, the second step in the replica computation is to
rewrite the free energy density using the replica trick:

fβ = − lim
N→∞

1

N
lim
n→0+

1

n

[
EJZnβ − 1

]
(1.7)
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Taking the average over the replicated partition sum is now straightforward:

EJZnβ = EJ

 ∑
s∈{−1,1}

e
β

∑
i1<i2<...<ip

si1 ...sip


(a)
=

n∏
a=1

∑
sa∈{−1,1}

EJ

 ∏
i1,i2,...,ip

e
β
p!

n∑
a=1

Ji1,...,ips
a
i1
...saip


=

n∏
a=1

∑
sa∈{−1,1}

exp

 β2

4Np−1

∑
i1,i2,...,ip

(
n∑
a=1

sai1 . . . s
a
ip

)2


(b)
=

n∏
a=1

∑
sa∈{−1,1}

exp

β2N

4

n∑
a,b=1

(
sa · sb

N

)p (1.8)

where in (a) we used the independence of Ji1···ip to take the average, using the fact that:

Ex∼N (0,∆)

[
eλx
]

= e
1
2

∆λ2 (1.9)

see discussion in eq. (1.39) for more detail. In (b) we noticed that the indices i1, · · · , ip decouple,
which gives the result.

2. introducing delta functions to fix the overlap and taken its Fourier transform, show that

E[Zn] ≈
∫ ∏

a<b

dqa,bdq̂a,be
−NG(Q,Q̂) (1.10)

with

G(Q, Q̂) = −nβ
2

4
− β2

2

∑
a<b

qpa,b + i
∑
a<b

q̂a,bqa,b − log

 ∑
{Sai ,...,Sni }

e
∑
a<b iq̂a,b

∑
i S

a
i S

b
i

 (1.11)

Solution: Define the usual overlap between two spin configurations:

qab =
1

N
sa · sb (1.12)

such that:

EJZnβ =
n∏
a=1

∑
sa∈{−1,1}

exp

β2N

4

n∑
a,b=1

(
qab
)p (1.13)

We now would like to get rid of the sum over the spin configurations. For that, introduce a delta
function to free the overlap parameters and rewrite it in Fourier space:

1 ∝
∫
Rn

∏
1≤a≤b≤n

dqab
∏

1≤a≤b≤n
δ
(
sa · sb −Nqab

)
=

∫
Rn

∏
1≤a≤b≤n

dqabdq̂ab

2π
e
i

∑
1≤a≤b≤n

q̂ab(sa·sb−Nqab)

(1.14)
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Inserting this in the expression for the replicated partition function allow us to write:

EJZnβ ∝
n∏
a=1

∑
sa∈{−1,1}

∫
Rn

∏
1≤a≤b≤n

dqabdq̂ab

2π
e
i

∑
1≤a≤b≤n

q̂ab(sa·sb−Nqab)+β2N
4

n∑
a,b=1

(qab)
p

=

∫
Rn

∏
1≤a≤b≤n

dqabdq̂ab

2π
e
−iN

∑
1≤a≤b≤n

q̂abqab+β2N
4

n∑
a,b=1

(qab)
p n∏
a=1

∑
sa∈{−1,1}

e
i

∑
1≤a≤b≤n

q̂absa·sb

(1.15)

=

∫
Rn

∏
1≤a≤b≤n

dqabdq̂ab

2π
e−NG({qab,q̂ab}) (1.16)

where we in the last line we have defined:

G({qab, q̂ab}) = i
∑

1≤a≤b≤n
q̂abqab − β2

4

n∑
a,b=1

(
qab
)p
− 1

N
log


n∏
a=1

∑
sa∈{−1,1}N

e
i

∑
1≤a≤b≤n

q̂absa·sb


(1.17)

Three simplifications lead to the expressions in the exercise. First, we note that the log term
factorise in N :

1

N
log

 n∏
a=1

∑
sa∈{−1,1}N

e
i

∑
1≤a<b≤n

N∑
i=1

q̂absai s
b
i

 =
1

N
log


 n∏
a=1

∑
sa∈{−1,1}

e
i

∑
1≤a<b≤n

q̂absasb
N


= log

 n∏
a=1

∑
sa∈{−1,1}

e
i

∑
1≤a<b≤n

q̂absasb
 (1.18)

Second, we note that since s ∈ {−1, 1}N we have:

qaa =
1

N
||sa||22 = 1 (1.19)

and therefore:

β2N

4

n∑
a,b=1

(
qab
)p

=
β2

4
n+

β2

2

∑
1≤a<b≤n

(
qab
)p

(1.20)

Third, we note that this also implies that we don’t need a constraint to fix qaa, and without loss
of generality we can set q̂aa = 0. Putting these three observations together yield the expression
given by the exercise.

3. Using the replica method, with the replica symmetric solution, show that the free entropy is
given by

fRS =
β2

4
+ log 2 (1.21)

as in the REM. It is possible, of course, to break the symmetry and to obtain the 1RSB solution,
which turns out to be correct at low temperature (at least for p large enough, and for a range
of temperature).
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Solution: Note that in the thermodynamic limit N →∞, we can apply Laplace’s method to
compute the integral in the replicated partition sum:

EJZnβ � e−NG({qab? ,q̂ab? }) (1.22)

where (qab? , q̂
ab
? ) are solutions of the following extremisation problem:

extr
qab,q̂ab

G({qab, q̂ab}) (1.23)

To solve this extremisation problem, we can look to zero-gradient points of G, which yield a set
of self-consistent saddle-point equations:

iq̂ab =
β2

4
p
(
qab
)p−1

, qab =

n∏
a=1

∑
sa∈{−1,1}

sasbe

∑
1≤a<b≤n

q̂absasb

n∏
a=1

∑
sa∈{−1,1}

e
i

∑
1≤a<b≤n

q̂absasb
≡ i〈sasb〉n (1.24)

which give us another interpretation of qab as a two-point correlation function of the replicated
system. If we could solve these equations, we would be able to insert the solution back in G
and take the n→ 0+ to get the free energy density. However, solving for the n(n− 1) variables
qab, q̂ab is intractable. Therefore, we restrict ourselves to searching for solutions which are replica
symmetric:

qab = q, q̂ab = −iq̂, 1 ≤ a < b ≤ n (1.25)

Which reduces the number of parameters we need to optimise from n(n−1) to 2, and considerable
simplify the expression for G:

G
(n)
RS (q, q̂) = −nβ

2

4
− β2n(n− 1)

4
qp +

n(n− 1)

2
q̂q − 1

N
log

 n∏
a=1

∑
sa∈{−1,1}

e
q̂

∑
1≤a<b≤n

sasb
 (1.26)

To simplify further, we can decouple the different replicas with the usual Hubbard-Stratonovich
transformation:

e
q̂

∑
1≤a<b≤n

sasb

= Ez∼N (0,1)

[
e

√
q̂z

n∑
a=1

sa−n
2
q̂
]

(1.27)

Which finally allow us to factorise in replica space:

log

 n∏
a=1

∑
sa∈{−1,1}

e
q̂

∑
1≤a<b≤n

sasb
 = −n

2
q̂ + log

 n∏
a=1

∑
sa∈{−1,1}

Ez∼N (0,1)

[
n∏
a=1

e
√
q̂zsa

] (1.28)

= −n
2
q̂ + logEz∼N (0,1)

(
2 cosh

(√
q̂z
))n

(1.29)

and to take the n→ 0+ limit explicitly:

GRS(q, q̂) ≡ lim
n→0+

1

n
G

(n)
RS (q, q̂) = −β

2

4
+
β2

4
qp − 1

2
qq̂ +

q̂

2
− Ez∼N (0,1)

[
log 2 cosh

(√
q̂z
)]

(1.30)

The replica symmetric free energy density is therefore given by:

fRS
β = −extr

q,q̂
GRS(q, q̂) (1.31)
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To find the extrema, we look for zero gradient points of GRS, which lead to the following set of
saddle-point equations:

q̂ =
β2

2
pqp−1, q = 1− 1√

q̂
Ez∼N (0,1)

[
z tanh

(√
q̂z
)]

(1.32)

Using Stein’s law, the second saddle-point equation can also be writen as:

q = Ez∼N (0,1)

[
tanh2

(√
q̂z
)]

(1.33)

Putting together, we can solve for q̂ write everything in terms of a single parameter q:

fRS
β = −β

2

4

[
1− pqp−1

? + (p− 1)qp?
]
− Ez∼N (0,1)

log 2 cosh

√pqp−1
?

2
βz

 (1.34)

where q? is the fixed point of:

q = Ez∼N (0,1)

[
tanh2

(√
pqp−1

2
βz

)]
(1.35)

As for the Random Field Ising Model, we don’t have a closed form solution for these equations.
However, we can solve them numerically, see Fig.1.35. Note that the paramagnetic solution
q = 0 is always a fixed point, and in particular it is the global minimum of GRS for β ∼ 1.
Therefore, for not so low-temperatures, the replica symmetric free energy is given by:

fRS
β =

β2

4
+ log 2 (1.36)

Interestingly, this is the same expression we have found for the replica symmetric free energy
of the random energy model. However, it is important to stress that this is only the case at
high-temperatures: indeed, for low-temperatures β � 1 the paramagnetic fixed point is not the
global minimum.
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Figure 1: (Top) Replica symmetric free energy potential GRS and (bottom) right-hand side of fixed-
point equation 1.35 as a function of the overlap q ∈ [0, 1] for different p and inverse temperatures β.
In dashed the line y = q.

4. It is interesting that the free energy is the same as the one of the REM. Show that, when p→∞,
the energies of the p − spin model becomes uncorrelated and that the p − spin model become
the REM in this limit.
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Solution: The Random Energy Model (REM) is defined by the distribution of the energies of
the 2N states, which are assumed to be Gaussian random variables with zero mean and variance
N/2. Therefore, to show that the p-spin model is equivalent to the REM as p→∞, we need to
show that the distribution of the energy of p-spin states coincides with the REM in this limit.
Given a state s ∈ {−1, 1}N , its energy under the p-spin model is given by:

H(s) = −
∑

i1<i2<...<ip

Ji1,...,ipsi1 . . . sip (1.37)

Therefore, the mean of the energy is:

EJH(s) = −
∑

i1<i2<...<ip

EJ
[
Ji1,...,ip

]
si1 . . . sip = 0 (1.38)

while the variance (we have computed this already for the replicas) is given by:

EJ
[
H(s(1))H(s(2))

]
=

∑
i1<i2<...<ip

∑
j1<j2<...<jp

EJ
[
Ji1,...,ipJj1,...,jp

]
s

(1)
i1
. . . s

(1)
ip
s

(2)
j1
. . . s

(2)
jp

=
p!

2Np−1

∑
i1<i2<...<ip

s
(1)
i1
. . . s

(1)
ip
s

(2)
i1
. . . s

(2)
ip

(a)
=

1

2Np−1

∑
i1 6=i2 6=... 6=ip

s
(1)
i1
. . . s

(1)
ip
s

(2)
i1
. . . s

(2)
ip

≈
(b)

1

2Np−1

∑
i1,i2,...,ip

s
(1)
i1
. . . s

(1)
ip
s

(2)
i1
. . . s

(2)
ip

=
N

2

(
s(1) · s(2)

N

)p
≡ N

2
q(s(1), s(2))p (1.39)

where in (a) we have used that p!
∑

i1<i2<...<ip
=
∑

i1 6=i2 6=... 6=ip because p! gives all the permuta-

tion of ordered indices and in (b) that
∑

i1 6=i2 6=... 6=ip ≈
∑

i1,i2,...,ip
since the terms with two equal

indices are subleading in N . Remember that q(s(1), s(2)) ∈ [0, 1], and therefore when p → ∞,
we have that q(s(1), s(2))p = 1 if s(1) = s(2) and 0 otherwise. Therefore,

lim
p→∞

EJ
[
H(s(1))H(s(2))

]
=
N

2
I(s(1) = s(2)) (1.40)

which is precisely the variance of the REM. Indeed, it is not hard to show that this implies
that their moment generating function also match in this limit, and therefore all the moments
coincide.

2 Exercise 12.2

We consider again the REM. Using the replica method, show that at for β ≥ βc, the second moment
of the participation ratio is given by

E[Y 2] =
3− 5m+ 2m2

3
(2.1)

Deduce that Y is not self-averaging. Actually, these results do not depends on the REM, but on the
1RSB structure, and are universal to all 1RSB models.
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Solution: Recall the fact that, in the REM, the partition function is defined as:

Z =

2N∑
i=1

e−βEi , (2.2)

where E is a random energy level with distribution:

P (E) =
e−

E2

N√
π/N

. (2.3)

After computing the 1RSB free-energy in the case of temperatures lower than the critical one, we have
introduced the participation ratio Y , defined as:

Y =
2N∑
i=1

(
e−βEi

Z

)2

. (2.4)

This quantity can be used to evaluate how many configurations belong to the dominant “state”. In
fact, if we reorganize the terms in the definition we get:

Y =
1

Z

2N∑
i=1

e−βEi
(
e−βEi

Z

)
=

∑2N

i=1 e
−βEi

(
e−βEi
Z

)
∑2N

i=1 e
−βEi

(2.5)

which is the expectation (over the measure of our problem) of the probability of finding a configuration
with energy Ei. We also evaluated the first moment of the participation (in the notes) to be equal to:

E [Y ] = 1−m = 1− βc
β

(2.6)

below the critical temperature βc = 2
√

log 2.
Now, we evaluate the second moment with the same procedure. We start from the square of Y :

Y 2 =

 2N∑
i=1

(
e−βEi

Z

)2
2

= Z−4
2N∑

j1,j2=1

e−2β(Ej1+Ej2 ). (2.7)

We need to take the expectation of this quantity w.r.t. the random distribution of the energy levels.
Thus, we start by replicating the expression:

E
[
Y 2
]

= lim
n→0

EZn−4
2N∑

j1,j2=1

e−2β(Ej1+Ej2 ) = lim
n→0

E
2N∑

i1,...,in−4=1

e−β(Ei1+···+Ein−4
)

2N∑
j1,j2=1

e−2β(Ej1+Ej2 ).

(2.8)
Now we can put the additional terms, summed over j1 and j2, in the first multiple sum. However, we
also have to add a constraint enforcing that the last two couples of replicas have the same energy:

E
[
Y 2
]

= lim
n→0

E
2N∑

i1,...,in=1

eβ(Ei1+···+Ein ) 11(in−3 = in−2)11(in−1 = in). (2.9)

Now, recall the fact that we defined the overlap parameter for this model precisely as Qa,b = 11(ia = ib).
We can use the symmetry between the replicas to rewrite the above expression as:

E
[
Y 2
]

= lim
n→0

2

n(n− 1)(n− 2)(n− 3)

∑
a6=b 6=c 6=d

〈Qa,bQc,d〉 . (2.10)
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Figure 2: 1RSB overlap matrix, with a block structure with parameters q1 (diagonal blocks) and q0

(off-diagonal blocks). In the REM, q1 = 1 and q0.

The saddle-point approximation we are assuming to hold tells us that the sum is dominated by terms
with a specific value for the overlap matrix Q. Below the critical temperature, we have seen that the
matrix displays a 1RSB block structure, with n/m square blocks with entry 1 stacked on the diagonal,
and zeros elsewhere (figure 2 shows and example).

Thus, the only remaining step is to counting how many distinct products Qa,bQc,d yield a non-zero
contribution to the sum we have just written. We get:

E
[
Y 2
]

= lim
n→0

n
mm(m− 1)

(
(m2 −m− (m− 1)− (m− 2)) + ( nm − 1)m(m− 1)

)
n(n− 1)(n− 2)(n− 3)/2

, (2.11)

where in the second term we are first picking an entry of Qc,d from the same block as in Qa,b, and
then from different diagonal blocks. This expression can be simplified to yield the sought result:

E
[
Y 2
]

=
3− 5m+ 2m2

3
. (2.12)

This value is clearly different from E [Y ]2, so the variance of the participation ratio is non-zero, thus
this quantity does not concentrate in the high limit.
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