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1 Exercise 4.1

Write the following problems (a) in terms of a probability distribution and (b) in terms of a graphical
model by drawing a (small) example of the corresponding factor graph.

(1) p-spin model

One model that is commonly studied in physics is the so-called Ising 3-spin model. The Hamil-
tonian of this model is written as

H({Si}Ni=1) = −
∑

(ijk)∈E

JijkSiSjSk −
N∑
i=1

hiSi (1.1)

where E is a given set of (unordered) triplets i 6= j 6= k, Jijk is the interaction strength for the
triplet (ijk) ∈ E, and hi is a magnetic field on spin i. The spins are Ising, which in physics
means Si ∈ {+1,−1}.

Solution: Since the Hamiltonian is given, in this case the probability distribution is simply
given by the Boltzmann distribution:

Pβ(S = s) =
1

Zβ
e−βH(s) =

N∏
i=1

eβhisi
∏

(ijk)∈E

eβJijksisjsk (1.2)

Note we have two flavours of factor nodes in this model: first, a local interaction term for each
spin variable si, i ∈ {1, · · · , N}; second, a three-body interaction term which couple triplets
(ijk) ∈ E of spins. In the notation of the lectures:

gi(si) = eβhisi , f(ijk)(si, sj , sk) = eβJijksisjsk (1.3)

Now let’s explicitly draw an example of factor graph. Consider for instance N = 6 spins and
the triplet set E = {(126), (234), (345), (456)}. Its factor graph is given by:
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(2) Independent set problem

Independent set is a problem defined and studied in combinatorics and graph theory. Given a
(unweighted, undirected) graph G(V,E), an independent set S ⊆ V is defined as a subset of
nodes such that if i ∈ S then for all j ∈ ∂i we have j /∈ S. In other words in for all (ij) ∈ E
only i or j can belong to the independent set.

(a) Write a probability distribution that is uniform over all independent sets on a given graph.

Solution: Let N = |V | denote the number of nodes in G. One way of parametrising a subset
of nodes S ⊂ V is to assign to every node i = 1, · · · , N a binary variable:

σSi =

{
1 if i ∈ S
0 otherwise

. (1.4)

which indicates whether node i belongs to S. Similarly, to every edge (ij) ∈ E, define a function:

f(ij)(σ
S
i , σ

S
j ) = I

((
σSi , σ

S
j

)
6= (1, 1)

)
. (1.5)

Or in words: f(ij) is one if at most one of the nodes i, j connected by the edge (ij) belong to S.
With these two definitions, we can characterise an independent subset S ⊂ V as:

S is independent ⇔ for all distinct i, j ∈ S, f(ij)(σi, σj) = 1 (1.6)

Or in words: an independent set is such that none of the nodes belonging to it are connected
by an edge of the graph. For a given set of nodes σ ∈ {0, 1}N the uniform probability measure
over independent sets is given by:

P(σ) =
1

ZG

∏
(ij)∈E

I ((σi, σj) 6= (1, 1)) (1.7)

where:

ZG =
∑

σ∈{0,1}N

∏
(ij)∈E

I ((σi, σj) 6= (1, 1)) = number of independent sets in G (1.8)

As an example, consider the following graph G:

1

2 3

4

5 6

The factor graph associated with the independent set measure is given by:

σ1 σ2 σ3 σ4 σ5 σ6

(12) (13) (23) (14) (25) (36)
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(b) Write a probability distribution that gives a larger weight to larger independent sets, where
the size of an independent set is simply |S|.

Solution: Note that the size of a set |S| can be expressed in terms of the variables σSi as:

|S| =
N∑
i=1

σSi (1.9)

To assign a larger weight to independent sets which are larger, we just need to multiply our
density by any positive increasing function g(|S|):

P(σ) =
1

Z̃G
g

(
N∑
i=1

σi

) ∏
(ij)∈E

I ((σi, σj) 6= (1, 1)) (1.10)

For example, we can choose g(x) = ehx for h > 0 to get:

P(σ) =
1

Z̃G

N∏
i=1

ehσi
∏

(ij)∈E

I ((σi, σj) 6= (1, 1)) (1.11)

Note that this would introduce a local factor node to variable node in the factor graph.

(3) Matching problem

Matching is another classical problem of graph theory. It is related to a dimer problem in
statistical physics. Given a (unweighted, undirected) graph G(V,E) a matching M ⊆ E is
defined as a subset of edges such that if (ij) ∈ M then no other edge that contains node i or j
can be in M . In other words a matching is a subset of edges such that no two edges of the set
share a node.

(a) Write a probability distribution that is uniform over all matchings on a given graph.

Solution: The construction of the factor graph for matching is very similar to the one for the
independent set, with the crucial difference that the variable nodes are the edges of G, instead of
the nodes. As before, we start by assigning a binary variable to each edge of G which identifies
whether it belongs or not to M :

s(ij) =

{
1 if (ij) ∈M
0 otherwise

(1.12)

Let N = |V |. As before, for every node i = 1, · · · , N we assign a function which is zero if the
node is attached to two edges belonging to M :

fi
(
{s(ij)}j∈∂i

)
= I

∑
j∈∂i

s(ij) ≤ 1

 (1.13)

Note that with this definition we allow for nodes to be unpaired. If we would like only perfect
matchings (i.e. when all eges are paired), we would impose equality. The uniform measure over
all matchings in G can therefore be written as:

P(s) =
1

ZG

N∏
i=1

I

∑
j∈∂i

s(ij) ≤ 1

 (1.14)
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where the partition function ZG counts the total number of matching sets M in G. Note that
different from (2), s ∈ R|E|. Note that the uniform measure assigns the same weight to large
matchings (i.e. when as many edges as possible are matched) and smaller matchings (e.g. when
only half of the edges are matched) . To illustrate the factor graph of the matching problem,
consider the same graph as in problem (2). The associated factor graph is given by:

σ12 σ13 σ23 σ14 σ25 σ36

f1 f2 f3 f4 f5 f6

(b) Write a probability distribution that that gives a larger weight to larger matchings, where
the size of a matching is simply |M |.

Solution: As before, we can write the size of a matching set as a function of s:

|M | =
∑

(ij)∈E

s(ij) (1.15)

Therefore, to assign a bigger weight to larger matchings, we just need to multiply the measure
by any positive increasing function g(|M |):

P(s) =
1

ZG
g

 ∑
(ij)∈E

s(ij)

 N∏
i=1

I

∑
j∈∂i

s(ij) ≤ 1

 (1.16)

This is the softer way to encourage a perfect matching than to impose equality at the factor
function fi.

2 Exercise 4.2:

Show that the BP equations we derived in the lecture

χj→asj =
1

Zj→a
gj(sj)

∏
b∈∂j\a

ψb→jsj (2.1)

ψa→isi =
1

Za→i

∑
{sj}j∈∂a\i

fa ({sj}j∈∂a)
∏

j∈∂a\i

χj→asj (2.2)

are stationarity conditions of the Bethe free entropy (†) under the constraint that both
∑

s ψ
a→i
s = 1

and
∑

s χ
i→a
s = 1 for all (ia) ∈ E.
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Solution: Recall that the Bethe free entropy is given by:

NΦBethe = logZ =
N∑
i=1

logZi +
M∑
a=1

logZa −
∑
(ia)

logZia

Zi ≡
∑
s

gi(s)
∏
a∈∂i

ψa→is

Za ≡
∑
{si}i∈∂a

fa ({si}i∈∂a)
∏
i∈∂a

χi→asi

Zia ≡
∑
s

χi→as ψa→is (2.3)

To show that the BP equations can be obtained as a stationary condition from the Bethe free entropy,
we need to show that the conditions:

∂ΦBethe

∂χj→asj

!
= 0,

∂ΦBethe

∂ψa→isi

!
= 0 (2.4)

lead to the BP equations. First, note that since the messages are independent, we have:

∂χj→asj

∂ψb→isi

= 0,
∂χj→asj

∂χi→bsi

= δabδij ,
∂ψa→jsj

∂ψb→isi

= δabδij (2.5)

for any variable i, j ∈ V and factor a, b ∈ F nodes. Therefore, the derivative of the partition functions
with respect to the messages are given by:

∂Zi

∂χj→asj

= 0,
∂Zi

∂ψa→jsj

= δij gj(sj)
∏

c∈∂j\a

ψc→jsj

∂Za

∂χj→bsj

= δab
∑

{sk}k∈∂a\j

fa
(
{sk}k∈∂a\j

) ∏
i∈∂a\j

χi→asi ,
∂Za

∂ψb→jsj

= 0

∂Zai

∂χj→bsj

= δabδij ψ
a→i
si ,

∂Zai

∂ψb→jsj

= δabδij χ
i→a
si

Therefore, taking the derivative of the Bethe free entropy with respect to χj→asj :

N
∂ΦBethe

∂χj→asj

(a)
=

1

∂χj→asj

logZa − 1

∂χj→asj

logZja

=
1

Za

∑
{sk}k∈∂a\j

fa
(
{sk}k∈∂a\j

) ∏
i∈∂a\j

χi→asi − 1

Zja
ψa→jsj (2.6)

where in (a) we used the fact that only the i and (ia) factors of the sum contribute. Setting this to
zero using the normalisation condition to show that Zj→a = Zia/Za give us the update equation for
ψa→j :

ψa→jsj =
1

Za→j

∑
{sk}k∈∂a\j

fa
(
{sk}k∈∂a\j

) ∏
i∈∂a\j

χi→asi (2.7)

5



Similarly, the derivative of the Bethe free entropy with respect to ψsj
a→j reads:

N
∂ΦBethe

∂ψa→jsj

(a)
=

1

∂ψa→jsj

logZj − 1

∂ψa→jsj

logZja

=
1

Zj
gj(sj)

∏
c∈∂j\a

ψc→jsj − 1

Zja
χj→asj (2.8)

Setting this to zero and using the normalisation condition for χj→asj leads to the BP equation for χj→asj :

χj→asj =
1

Zj→a
gj(sj)

∏
c∈∂j\a

ψc→jsj (2.9)
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