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1 Exercise 9.1

Show that the Bethe free entropy for the stochastic block model can be written using
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where c is the average degree given by (9.2).

Solution: In order to obtain the sought expression for the BP free entropy we will work on the
actual factor graph of the model, where each pair of nodes ¢ and j will be connected to a pairwise
interaction factor (ij). On the edges, we will denote as @DZ%(” the message sent from i to (ij),
representing the cavity marginal corresponding to ”color” a, and as X(Z] )2 the message sent from
(ij) to i, representing the probability of "color” a being the correct assignment for variable i given
the constraint (ij). Remember that each variable also receives an external field of intensity logn,,
representing the prior on the size of the communities. Finally, )¢ will denote the marginal of variable
i.
We are going to repeatedly use the BP equation:
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where Z(;;y_; is simply obtained by summing over a the numerator.
The general expression for the Bethe free-entropy reads:
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and thus we can proceed by evaluating all the terms separately and then putting all the pieces together
(as usual we expect some cancellations). Note that the notation is a bit overloaded, but the difference
is deliberate: Z;, Z(;;) in the previous expression are actually different from Z*, Z*/ in equation 1.1.



We start with the variable contribution:
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using the BP equation for (*), and splitting over edge/non-edge contributions in (**).
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Now, in the second term, we can use the normalization ), @bg =1 and write:
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where, as in the lecture, we define hq = >, 37, wl];%\,”, and where in (*) we used the fact the we
consider the high dimensional limit N — oo, and in (**) we approximated the sum (up to O(1/N))
by replacing the sum over the non edges with the sum over all the links, and the cavity marginals
with the marginals. Therefore we have:
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Now we can look at the factor contribution:
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where we have again split over edge/non-edge contributions in (*) and exploited the large N limit in

Finally, the edge contribution yields:
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Putting everything together we get:
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where in (*) we used the fact that the sum over colors can be split in °, , f(a,b) = >, (f(a,b) +
f(b,a))+> ", f(a,a) as in expression 1.1 in the assignment, and approximated the sum over non-edges
with the sum over all links.

Finally, if we look at the last term in equation 1.20, we can recognize:
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where in (*) the Nishimori condition guarantees the equivalence between the posterior average and
the true generative model.

2 Exercise 9.2

Show that in the stochastic block model maximization of the Bethe free entropy with respect to the
parameters n, and ¢, at a BP fixed point leads to the following conditions for stationarity that can
be then used for iterative learning of the parameters n, and cqp.
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Solution:  Let’s start by looking at the derivative w.r.t. n,. Since we have to guarantee normal-
ization of probabilities, we use the method of the multipliers and introduce the Lagrangian:
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and set to zero the derivative:
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Remember that the Bethe free entropy is stationary with respect to the BP messages, so we only need
to take explicit derivatives of ®pp. The only term where n, appears is the first term of eq. 1.3:
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Therefore we have:
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Moreover we also require:
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so, if we sum equation 2.6 over the colors we get:
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where in (*) we used the normalization of the messages, and in (**) we used equation 2.7. So,
substituting A = 1 in eq. 2.6 we finally have:
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as one would have expected from the Nishimori condition.
Getting the equation for ¢y is a bit more involved. We will split the calculation in the three
derivatives of the terms appearing in eq. 1.3. First we evaluate:
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where in (*) we used the fact that one can rewrite Z° as:
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and finally:
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Putting everything together (notice that the right term in 2.13 double counts 2.15):
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Now, if we multiply both terms by c.q and send (cd) — (ab) we get the sought result:
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