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1 Exercise 9.1

Show that the Bethe free entropy for the stochastic block model can be written using

Zij =
∑
a<b

cab(ψ
i→j
a ψj→ib + ψi→jb ψj→ia ) +

∑
a

caaψ
i→j
a ψj→ia for (i, j) ∈ E (1.1)

Zi =
∑
ti

ntie
−hti

∏
j∈∂i

∑
tj

ctjtiψ
k→i
tj (1.2)

as

ΦBP(q, {na}, {cab}) =
1

N

∑
i

logZi − 1

N

∑
(i,j)∈E

logZij +
c

2
(1.3)

where c is the average degree given by (9.2).

Solution: In order to obtain the sought expression for the BP free entropy we will work on the
actual factor graph of the model, where each pair of nodes i and j will be connected to a pairwise

interaction factor (ij). On the edges, we will denote as ψ
i→(ij)
a the message sent from i to (ij),

representing the cavity marginal corresponding to ”color” a, and as χ
(ij)→i
a the message sent from

(ij) to i, representing the probability of ”color” a being the correct assignment for variable i given
the constraint (ij). Remember that each variable also receives an external field of intensity log na,
representing the prior on the size of the communities. Finally, ψia will denote the marginal of variable
i.

We are going to repeatedly use the BP equation:

χ(ij)→i
a =

1

Z(ij)→i

∑
b

ψ
j→(ij)
b

[
(1−Aij)

(
1− cab

N

)
+Aijcab

]
, (1.4)

where Z(ij)→i is simply obtained by summing over a the numerator.
The general expression for the Bethe free-entropy reads:

ΦBP =
1

N

∑
i

logZi +
1

N

∑
(ij)

logZ(ij) −
1

N

∑
i(ij)

logZi(ij) (1.5)

and thus we can proceed by evaluating all the terms separately and then putting all the pieces together
(as usual we expect some cancellations). Note that the notation is a bit overloaded, but the difference
is deliberate: Zi, Z(ij) in the previous expression are actually different from Zi, Zij in equation 1.1.
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We start with the variable contribution:

Zi =
∑
a

na
∏
(ij)

χ(ij)→i
a (1.6)

(∗)
=

∑
a

na
∏
(ij)

1

Z(ij)→i

∑
b

ψ
j→(ij)
b

[
(1−Aij)

(
1− cab

N

)
+Aijcab

]
(1.7)

(∗∗)
=

1∏
(ij) Z(ij)→i

∑
a

na
∏

(ij)∈E

[∑
b

ψ
j→(ij)
b cab

] ∏
(ij)/∈E

[∑
b

ψ
j→(ij)
b

(
1− cab

N

)]
, (1.8)

using the BP equation for (*), and splitting over edge/non-edge contributions in (**).

Now, in the second term, we can use the normalization
∑

b ψ
j→(ij)
b = 1 and write:

∏
(ij)/∈E

[
1−

∑
b

ψ
j→(ij)
b

cab
N

]
(∗)
≈ e−

∑
(ij)/∈E

∑
b ψ

j→(ij)
b

cab
N

(∗∗)
≈ e−ha (1.9)

where, as in the lecture, we define ha =
∑

j

∑
b ψ

j
b
cab
N , and where in (*) we used the fact the we

consider the high dimensional limit N → ∞, and in (**) we approximated the sum (up to O(1/N))
by replacing the sum over the non edges with the sum over all the links, and the cavity marginals
with the marginals. Therefore we have:

Zi =

∑
a nae

−ha∏
(ij)∈E

[∑
b ψ

j→(ij)
b cab

]
∏

(ij) Z(ij)→i
=

Zi∏
(ij) Z(ij)→i

(1.10)

Now we can look at the factor contribution:

Z(ij) =
∑
a,b

ψi→(ij)
a ψ

j→(ij)
b

[
(1−Aij)

(
1− cab

N

)
+Aijcab

]
(1.11)

(∗)
= I((ij) ∈ E)

∑
a,b

ψi→(ij)
a ψ

j→(ij)
b cab + I((ij) /∈ E)

∑
a,b

ψi→(ij)
a ψ

j→(ij)
b

(
1− cab

N

)
(1.12)

(∗∗)
= I((ij) ∈ E)

∑
a,b

ψi→(ij)
a ψ

j→(ij)
b cab + I((ij) /∈ E) e−

∑
a,b ψ

i→(ij)
a ψ

j→(ij)
b

cab
N , (1.13)

where we have again split over edge/non-edge contributions in (*) and exploited the large N limit in
(**).

Finally, the edge contribution yields:

Zi(ij) =
∑
a

ψi→(ij)
a χ(ij)→i

a (1.14)

(∗)
=

∑
a

ψi→(ij)
a

1

Z(ij)→i

∑
b

ψ
j→(ij)
b

[
(1−Aij)

(
1− cab

N

)
+Aijcab

]
(1.15)

=
Z(ij)

Z(ij)→i
, (1.16)
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Putting everything together we get:

ΦBP =
1

N

∑
i

(logZi −
∑
(ij)

logZ(ij)→i) +
1

N

∑
(ij)

logZ(ij) −
1

N

∑
i(ij)

(logZ(ij) − logZ(ij)→i)(1.17)

=
1

N

∑
i

logZi − 1

N

∑
(ij)

logZ(ij) (1.18)

=
1

N

∑
i

logZi − 1

N

∑
(ij)∈E

log
∑
a,b

ψi→(ij)
a ψ

j→(ij)
b cab +

1

N

∑
(ij)/∈E

∑
a,b

ψi→(ij)
a ψ

j→(ij)
b

cab
N

(1.19)

(∗)
≈ 1

N

∑
i

logZi − 1

N

∑
(ij)∈E

logZij +
1

N

∑
(ij)

∑
a,b

ψiaψ
j
b

cab
N

(1.20)

where in (*) we used the fact that the sum over colors can be split in
∑

a,b f(a, b) =
∑

a<b(f(a, b) +
f(b, a))+

∑
a f(a, a) as in expression 1.1 in the assignment, and approximated the sum over non-edges

with the sum over all links.
Finally, if we look at the last term in equation 1.20, we can recognize:∑

(ij)

∑
a,b

ψiaψ
j
b

cab
N

= 〈|E|〉posterior
(∗)
= N

c

2
(1.21)

where in (*) the Nishimori condition guarantees the equivalence between the posterior average and
the true generative model.

2 Exercise 9.2

Show that in the stochastic block model maximization of the Bethe free entropy with respect to the
parameters na and cab at a BP fixed point leads to the following conditions for stationarity that can
be then used for iterative learning of the parameters na and cab.

na =
1

N

∑
i

ψia (2.1)

cab =
1

N

1

nbna

∑
(i,j)∈E

cab(ψ
i→j
a ψj→ib + ψi→jb ψj→ia )

Zij
. (2.2)

Solution: Let’s start by looking at the derivative w.r.t. na. Since we have to guarantee normal-
ization of probabilities, we use the method of the multipliers and introduce the Lagrangian:

L = ΦBP + λ(1−
∑
a

na) (2.3)

and set to zero the derivative:
∂ncL = ∂ncΦBP − λ = 0 (2.4)

Remember that the Bethe free entropy is stationary with respect to the BP messages, so we only need
to take explicit derivatives of ΦBP . The only term where nb appears is the first term of eq. 1.3:

∂ncΦBP =
1

N

∑
i

∂nc logZi =
1

N

∑
i

e−hc
∏
j∈∂i

∑
b ψ

j→i
b ccb

Zi
=

1

N

∑
i

ψic
nc
. (2.5)
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Therefore we have:

∂ncL = 0 −→ 1

N

∑
i

ψic = λnc (2.6)

Moreover we also require:

∂λL = 1−
∑
a

na = 0 (2.7)

so, if we sum equation 2.6 over the colors we get:

1

N

∑
i

∑
c

ψic
(∗)
= 1 = λ

∑
c

nc
(∗∗)
= λ, (2.8)

where in (*) we used the normalization of the messages, and in (**) we used equation 2.7. So,
substituting λ = 1 in eq. 2.6 we finally have:

na =
1

N

∑
i

ψia, (2.9)

as one would have expected from the Nishimori condition.
Getting the equation for cab is a bit more involved. We will split the calculation in the three

derivatives of the terms appearing in eq. 1.3. First we evaluate:

∂ccd
1

N

∑
i

logZi =

∑
i

N

∂ccd(
∑

a nae
−ha∏

j∈∂i
∑

b cabψ
j→i
b )

Zi
(2.10)

=

∑
i

N

−(∂ccdhc)nce
−hc∏

j∈∂i
∑

b ccbψ
k→i
b + (c↔ d)

Zi

+

∑
i

N

nce
−hc∂ccd(

∏
j∈∂i/k

∑
b ccbψ

j→i
b )) + (c↔ d)

Zi
(2.11)

=

∑
i

N

−( 1
N

∑
k ψ

k
d)ψicZ

i + (c↔ d)

Zi

+

∑
i

N

nce
−hc∑

k ψ
k→i
d (

∏
j∈∂i/k

∑
b ccbψ

j→i
b )) + (c↔ d)

Zi
(2.12)

(∗)
= −2ncnd +

1

N

∑
i,k

ψk→id ψi→kc + (c↔ d)

Zik
(2.13)

where in (*) we used the fact that one can rewrite Zi as:

Zi =
∑
a

nae
−ha

∏
j∈∂i

∑
b

ψj→ib cab (2.14)

=
∑
ab

cabψ
j→i
b nae

−ha
∏

k∈∂i/j

∑
c

ψj→ic cac (2.15)

=
∑
ab

cabψ
j→i
b ψi→ja Zi→j (2.16)

= ZijZi→j (2.17)

Then we have:

∂ccd
1

N

∑
(ij)∈E

logZij =

∑
(ij)∈E

N

∂ccd(
∑

ab ψ
i→j
a ψj→ib cab)

Zij
(2.18)

=
1

N

∑
(ij)∈E

ψi→jc ψj→id + (c↔ d)

Zij
(2.19)
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and finally:

∂ccd

( c
2

)
=

1

2
∂ccd

(∑
ab

nanbcab

)
= ncnd (2.20)

Putting everything together (notice that the right term in 2.13 double counts 2.15):

∂ccdΦBP =
1

N

∑
(ij)∈E

ψi→jc ψj→id + (c↔ d)

Zij
− ncnd = 0. (2.21)

Now, if we multiply both terms by ccd and send (cd)→ (ab) we get the sought result:

cab =
1

Nnanb

∑
(ij)∈E

cabψ
i→j
a ψj→ib + (a↔ b)

Zij
. (2.22)
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