Logo
0.1

Getting started

  • Installation
  • Tutorial

User guide

  • Implementation
  • Examples
    • Sparse models (Linear regression, Gradient, FFT)
    • Generalized Linear Models (GLMs)
    • Inpainting with VAE prior
  • Contributing
  • Citation

API reference

  • Algorithms
  • Beliefs
  • Priors
  • Likelihoods
  • Channels
  • Variables
  • Ensembles
  • Utils
Tree-AMP
  • Docs »
  • Examples
Next Previous

Examples¶

Sparse models (Linear regression, Gradient, FFT)¶

../_images/sphx_glr_plot_raccoon_deconv_thumb.png

Raccoon deconvolution¶

../_images/sphx_glr_plot_sparse_gradient_thumb.png

Sparse gradient¶

../_images/sphx_glr_plot_sparse_fft_thumb.png

Sparse FFT¶

../_images/sphx_glr_plot_raccoon_denoise_thumb.png

Raccoon denoising¶

Generalized Linear Models (GLMs)¶

../_images/sphx_glr_plot_cs_universality_thumb.png

Universality (noiseless CS)¶

../_images/sphx_glr_plot_perceptron_thumb.png

Perceptron¶

../_images/sphx_glr_plot_cs_thumb.png

Compressed Sensing¶

../_images/sphx_glr_plot_complex_pr_thumb.png

Complex phase retrieval¶

Inpainting with VAE prior¶

../_images/sphx_glr_plot_vae_thumb.png

Inpainting with VAE prior¶

Download all examples in Python source code: gallery_python.zip

Download all examples in Jupyter notebooks: gallery_jupyter.zip

Gallery generated by Sphinx-Gallery


© Copyright 2021, Tree-AMP developers

Built with Sphinx using a theme provided by Read the Docs.